skip to main content

SciTech ConnectSciTech Connect

Title: Manus Water Isotope Investigation Field Campaign Report

The objective of this field campaign was to investigate climatic controls on the stable isotopic composition of water vapor, precipitation, and seawater in the western tropical Pacific. Simultaneous measurements of the stable isotopic composition of vapor and precipitation from April 28 to May 8, 2013, at the Manus Tropical Western Pacific Atmospheric Radiation Measurement site, provided several key insights into the nature of the climate signal archived in precipitation and vapor isotope ratios. We observed a large shift from lower to higher isotopic values in vapor and precipitation because of the passage of a mesoscale convective system west of the site and a transition from a regional stormy period into a more quiescent period. During the quiescent period, the stable isotopic composition of vapor and precipitation indicated the predominance of oceanic evaporation in determining the isotopic composition of boundary-layer vapor and local precipitation. There was not a consistent relationship between intra-event precipitation amount at the site and the stable isotopic composition of precipitation, thus challenging simplified assumptions about the isotopic “amount effect” in the tropics on the time scale of individual storms. However, some storms did show an amount effect, and deuterium excess values in precipitation had a significant relationshipmore » with several meteorological variables, including precipitation, temperature, relative humidity, and cloud base height across all measured storms. The direction of these relationships points to condensation controls on precipitation deuterium excess values on intra-event time scales. The relationship between simultaneous measurements of vapor and precipitation isotope ratios during precipitation events indicates the ratio of precipitation-to-vapor isotope ratios can diagnose precipitation originating from a vapor source unique from boundary-layer vapor and rain re-evaporation.« less
 [1] ;  [2] ;  [3]
  1. University of Illinois, Urbana-Champaign
  2. Georgia Institute of Technology
  3. University of Colorado, Boulder
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Program Document
DOE ARM Climate Research Facility, Pacific Northwest National Laboratory, Richland, WA
Research Org:
DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Contributing Orgs:
University of Illinois, Urbana-Champaign, Georgia Institute of Technology, University of Colorado, Boulder
Country of Publication:
United States
stable isotope composition of oxygen, stable isotope composition of hydrogen, water isotope variability in the tropics, mesoscale convective systems, ocean evaporation, precipitation deuterium excess, rain evaporation