skip to main content

SciTech ConnectSciTech Connect

Title: Implementation of Tunneling Passivated Contacts into Industrially Relevant n-Cz Si Solar Cells

We identify bottlenecks, and propose solutions, to implement a B-diffused front emitter and a backside pc-Si/SiO2 pasivated tunneling contact into high efficiency n-Cz Si cells in an industrially relevant way. We apply an O-precipitate dissolution treatment to make n-Cz wafers immune to bulk lifetime process degradation, enabling robust, passivated B front emitters with J0 <; 20fA/cm2. Adding ultralow recombination n+ pc-Si/SiO2 back contacts enables pre-metallized cells with iVoc=720 mV and J0=8.6 fA/cm2. However, metallization significantly degrades performance of these contacts due to pinholes and possibly, grain boundary diffusion of primary metal and source contaminates such as Cu. An intermediate, doped a-Si:H capping layer is found to significantly block the harmful metal penetration into pc-Si.
; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Presented at the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 14-19 June 2015, New Orleans, Louisiana; Related Information: Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 14-19 June 2015, New Orleans, Louisiana
Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE)
Research Org:
NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
Country of Publication:
United States
14 SOLAR ENERGY; 36 MATERIALS SCIENCE passivated contacts; Tabula Rasa; oxygen precipitates