skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrafast electron kinetics in short pulse laser-driven dense hydrogen

Journal Article · · Journal of Physics. B, Atomic, Molecular and Optical Physics
 [1];  [2];  [3];  [4];  [4];  [4];  [5];  [4];  [6];  [7];  [6];  [8];  [9];  [10];  [11];  [6];  [5];  [4];  [8];  [12] more »;  [13];  [14];  [15];  [4];  [4];  [15];  [16];  [6];  [4];  [13] « less
  1. European XFEL, Hamburg (Germany); Friedrich-Schiller-Univ., Jena (Germany)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. Rostock, Rostock (Germany)
  3. Quantum Wise A/S, Copenhagen (Denmark)
  4. Univ. Rostock, Rostock (Germany)
  5. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  7. Friedrich-Schiller-Univ., Jena (Germany); Helmholtz-Institut Jena, Jena (Germany)
  8. Univ. of Oxford, Oxford (United Kingdom)
  9. Institut de mineralogie, Paris (France); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  10. Friedrich-Schiller-Univ., Jena (Germany)
  11. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging CUI, Hamburg (Germany)
  12. Univ. of Edinburgh, Edinburgh (United Kingdom)
  13. European XFEL, Hamburg (Germany)
  14. Extreme Matter Institute, GSI Helmholtzzentrum fur Schwerionenforschung, Darmstadt (Germany)
  15. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  16. Imperial College, London (United Kingdom)

Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities of 1015 – 1016W cm–2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about $25$ and $$40\;\mathrm{eV}$$ for simulated delay times up to $$+70\;\mathrm{fs}$$ after the laser pulse maximum. Experimentally, the time-integrated emitted bremsstrahlung in the spectral range of 8–18 nm was corrected for the wavelength-dependent instrument efficiency. The resulting spectrum cannot be fit with a single temperature bremsstrahlung model, and the best fit is obtained using two temperatures of about 13 and $$30\;$$eV. The lower temperatures in the experiment can be explained by missing energy-loss channels in the simulations, as well as the inclusion of hot, non-Maxwellian electrons in the temperature calculation. Furthermore, we resolved the time-scale for laser-heating of hydrogen, and PIC results for laser–matter interaction were successfully tested against the experiment data.

Research Organization:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
Grant/Contract Number:
AC02-76SF00515; AC52-07NA27344
OSTI ID:
1249381
Alternate ID(s):
OSTI ID: 1260499
Report Number(s):
SLAC-PUB-16138; LLNL-JRNL-686307
Journal Information:
Journal of Physics. B, Atomic, Molecular and Optical Physics, Vol. 48, Issue 22; ISSN 0953-4075
Publisher:
IOP PublishingCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science