skip to main content

SciTech ConnectSciTech Connect

Title: The effect of atomic-scale defects and dopants on phosphorene electronic structure and quantum transport properties.

By means of a multi-scale first-principles approach, a description of the local electronic structure of 2D and narrow phosphorene sheets with various types of modifications is presented. Firtly, a rational argument based on the geometry of the pristine and modified P network, and supported by the Wannier functions formalism is introduced to describe a hybridization model of the P atomic orbitals. Ab initio calculations show that non-isoelectronic foreign atoms form quasi-bound states at varying energy levels and create different polarization states depending on the number of valence electrons between P and the doping atom. The quantum transport properties of modified phosphorene ribbons are further described with great accuracy. The distortions on the electronic bands induced by the external species lead to strong backscattering effects on the propagating charge carriers. Depending on the energy of the charge carrier and the type of doping, the conduction may range from the diffusive to the localized regime. Interstitial defects at vacant sites lead to homogeneous transport fingerprints across different types of doping atoms. We suggest that the relatively low values of charge mobility reported in experimental measurements may have its origin in the presence of defects.
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review, B: Condensed Matter; Journal Volume: 93; Journal Issue: 3
American Physical Society (APS)
Research Org:
Argonne National Laboratory (ANL)
Sponsoring Org:
USDOE Office of Science - Office of Basic Energy Sciences - Materials Sciences and Engineering Division
Country of Publication:
United States