skip to main content

SciTech ConnectSciTech Connect

Title: Recovery Act. Advanced Building Insulation by the CO2 Foaming Process

In this project, ISTN proposed to develop a new "3rd" generation of insulation technology. The focus was a cost-effective foaming process that could be used to manufacture XPS and other extruded polymer foams using environmentally clean blowing agents, and ultimately achieve higher R-values than existing products while maintaining the same level of cost-efficiency. In the U.S., state-of-the-art products are primarily manufactured by two companies: Dow and Owens Corning. These products (i.e., STYROFOAM and FOAMULAR) have a starting thermal resistance of R-5.0/inch, which declines over the life of the product as the HFC blowing agents essential to high R-value exchange with air in the environment. In the existing technologies, the substitution of CO2 for HFCs as the primary foaming agent results in a much lower starting R-value, as evidenced in CO2-foamed varieties of XPS in Europe with R-4.2/inch insulation value. The major overarching achievement from this project was ISTN's development of a new process that uses CO2 as a clean blowing agent to achieve up to R-5.2/inch at the manufacturing scale, with a production cost on a per unit basis that is less than the cost of Dow and Owens Corning XPS products.
  1. Industrial Science and Technology Network, Inc., Lancaster, PA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Industrial Science and Technology Network, Inc., Lancaster, PA (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 36 MATERIALS SCIENCE Insulation; building insulation; XPS; energy efficiency; building envelope; nanomaterials