skip to main content

SciTech ConnectSciTech Connect

Title: Ionic Liquids as Multi-Functional Lubricant Additives to Enhance Engine Efficiency (final report NFE-12-03876)

This ORNL-Shell CRADA developed and investigated ionic liquids (ILs) as multifunctional additives for next-generation low-viscosity engine oils. Several groups of oil-miscible ILs were successfully designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Synergistic effects between the common anti-wear additive zinc dialkyldithiophosphate (ZDDP) and a particular group of ILs were discovered with > 30% friction reduction and 70% wear reduction compared with using ZDDP or IL alone. The IL+ZDDP tribofilm distinguishes itself from the IL or ZDDP tribofilms with substantially higher contents of metal phosphates but less metal oxides and sulfur compounds. Notably, it was revealed that the actual concentrations of functional elements on the droplet surface of the oil containing IL+ZDDP are one order magnitude higher than their nominal values. Such significantly increased concentrations of anti-wear agents are presumably expected for the oilsolid interface and believed to be responsible for the superior lubricating performance. A prototype SAE 0W-16 engine oil using a synergistic IL+ZDDP pair as the anti-wear additive has been formulated based on the compatibility between the IL and other additives. Sequence VIE full-scale engine dynamometer tests demonstrated fuel economy improvement (FEI) for this prototype oil and revealedmore » the individual contributions from the lower oil viscosity and reduced boundary friction. The impact of IL and IL+ZDDP on exhaust emission catalyst was investigated using an accelerated small engine aging test and results were benchmarked against ZDDP.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [2] ;  [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Shell Global Solutions, Houston, TX (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
VT0604000; CEVT008
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States