skip to main content

SciTech ConnectSciTech Connect

Title: 99Tc(VII) Retardation, Reduction, and Redox Rate Scaling in Naturally Reduced Sediments

Abstract: An experimental and modeling study was conducted to investigate pertechnetate (Tc(VII)) retardation, reduction, and rate scaling in three sediments from Ringold formation at U.S. Department of Energy’s Hanford site, where 99Tc is a major contaminant in groundwater. Tc(VII) was reduced in all the sediments in both batch reactors and diffusion columns, with a faster rate in a sediment containing a higher concentration of HCl-extractable Fe(II). Tc(VII) migration in the diffusion columns was reductively retarded with retardation degrees correlated with Tc(VII) reduction rates. The reduction rates were faster in the diffusion columns than those in the batch reactors, apparently influenced by the spatial distribution of redox-reactive minerals along transport paths that supplied Tc(VII). X-ray computed tomography and autoradiography were performed to identify the spatial locations of Tc(VII) reduction and transport paths in the sediments, and results generally confirmed the newly found behavior of reaction rate changes from batch to column. The results from this study implied that Tc(VII) migration can be reductively retarded at Hanford site with a retardation degree dependent on reactive Fe(II) content and its distribution in sediments. This study also demonstrated that an effective reaction rate may be faster in transport systems than that in well-mixed reactors.
; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0013-936X; KP1702030
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Environmental Science and Technology; Journal Volume: 49; Journal Issue: 22
American Chemical Society (ACS)
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Org:
Country of Publication:
United States
Tc transport