skip to main content

SciTech ConnectSciTech Connect

Title: Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles

The cell membrane represents an important biological interface that nanoparticles may encounter after being released into the environment. Interaction of nanoparticles with cellular membranes may alter membrane structure and function, lead to their uptake into cells, and elicit adverse biological responses. Supported lipid bilayers have proven to be valuable ex vivo models for biological membranes, allowing investigation of their mechanisms of interaction with nanoparticles with a degree of control impossible in living cells. To date, the majority of research on nanoparticle interaction with supported lipid bilayers has employed membranes composed of single or binary mixtures of phospholipids. Cellular membranes contain a wide variety of lipids and exhibit lateral organization. Ordered membrane domains enriched in specific membrane components are referred to as lipid rafts and have not been explored with respect to their interaction with nanoparticles. Here we develop model lipid raft-containing membranes amenable to investigation by a variety of surface-sensitive analytical techniques and demonstrate that lipid rafts influence the extent of nanoparticle attachment to model membranes. We determined conditions that allow reliable formation of bilayers containing rafts enriched in sphingomyelin and cholesterol and confirmed their morphology by structured illumination and atomic force microscopies. We demonstrate that lipid rafts increase attachmentmore » of cationic gold nanoparticles to model membranes under near physiological ionic strength conditions (0.1 M NaCl) at pH 7.4. We anticipate that these results will serve as the foundation for and motivate further study of nanoparticle interaction with compositionally varied lipid rafts.« less
; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
47975; KP1704020
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Environmental Science: Nano, 3(1):45-55
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Lipid; gold; nanoparticles; cellular membranes; nanomaterials; Environmental Molecular Sciences Laboratory