skip to main content

SciTech ConnectSciTech Connect

Title: Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach

Ionic liquids (ILs) are salts that remain liquid down to low temperatures, and sometimes well below room temperature. ILs have been called “green solvents” because of their extraordinarily low vapor pressure and excellent solvation power, but ecotoxicology studies have shown that some ILs exhibit greater toxicity than traditional solvents. A fundamental understanding of the molecular mechanisms responsible for IL toxicity remains elusive. Here we show that one mode of IL toxicity on unicellular organisms is driven by swelling of the cell membrane. Cytotoxicity assays, confocal laser scanning microscopy, and molecular simulations reveal that IL cations nucleate morphological defects in the microbial cell membrane at concentrations near the half maximal effective concentration (EC50) of several microorganisms. Lastly, cytotoxicity increases with increasing alkyl chain length of the cation due to the ability of the longer alkyl chain to more easily embed in, and ultimately disrupt, the cell membrane.
 [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [3] ;  [1]
  1. Univ. of Notre Dame, Notre Dame, IN (United States)
  2. Wayne State Univ., Detroit, MI (United States)
  3. Oklahoma State Univ., Stillwater, OK (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Nature Publishing Group
Research Org:
Univ. of Notre Dame, Notre Dame, IN (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY membrane biophysics; physical chemistry