skip to main content

SciTech ConnectSciTech Connect

Title: Influence of Grain Boundary Properties and Orientation on Void Nucleation

For ductile metals, dynamic fracture during shock loading is thought to occur through void nucleation, growth, and then coalescence that leads to material failure. Particularly for high purity metals, it has been observed by numerous investigators that, under incipient spall conditions, voids appear to heterogeneously nucleate at some grain boundaries, but not others. Several factors can affect the void nucleation stress at a grain boundary, such as grain boundary structure, orientation with respect to the loading direction, energy and excess volume, in addition to its interactions with dislocations. In this work, we focus on the influence of loading direction with respect to the grain boundary plane and grain boundary properties such as energy and excess volume on the stress required for void nucleation of a grain boundary, in copper from moleculardynamics simulations. Flyer plate simulations were carried out for four boundary types with different energies and excess volumes. These boundaries were chosen as model systems to represent various boundaries observed in “real” materials. Simulations indicate that there is no direct correlation between the void nucleation stress at a boundary and either its energy and excess volume. This result suggests that average properties of grain boundaries alone are not sufficient indicatorsmore » of the spall strength of a boundary and perhaps local boundary properties need to be taken into account in order to predict its susceptibility to void nucleation for broad ranges of materials. We also present both experimental and simulation results corresponding to the affect of orientation on void nucleation.« less
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
Country of Publication:
United States