skip to main content

SciTech ConnectSciTech Connect

Title: Importance of the DNA “bond” in programmable nanoparticle crystallization

If a solution of DNA-coated nanoparticles is allowed to crystallize, the thermodynamic structure can be predicted by a set of structural design rules analogous to Pauling's rules for ionic crystallization. The details of the crystallization process, however, have proved more difficult to characterize as they depend on a complex interplay of many factors. Here, we report that this crystallization process is dictated by the individual DNA bonds and that the effect of changing structural or environmental conditions can be understood by considering the effect of these parameters on free oligonucleotides. Specifically, we observed the reorganization of nanoparticle superlattices using time-resolved synchrotron small-angle X-ray scattering in systems with different DNA sequences, salt concentrations, and densities of DNA linkers on the surface of the nanoparticles. The agreement between bulk crystallization and the behavior of free oligonucleotides may bear important consequences for constructing novel classes of crystals and incorporating new interparticle bonds in a rational manner.
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America; Journal Volume: 111; Journal Issue: 42
National Academy of Sciences, Washington, DC (United States)
Research Org:
Argonne National Laboratory (ANL)
Sponsoring Org:
Air Force Research Laboratory - Air Force Office of Scientific Research (AFOSR); USDOE Office of Science - Office of Basic Energy Sciences
Country of Publication:
United States
DNA materials; colloidal crystallization; nanostructure; self-assembly; superlattices