skip to main content

SciTech ConnectSciTech Connect

Title: Time-Domain Simulations of Transient Species in Experimentally Relevant Environments

Simulating the spectroscopic properties of short-lived thermal and photochemical reaction intermediates and products is a challenging task, as these species often feature atypical molecular and electronic structures. The complex environments in which such species typically reside in practice add further complexity to the problem. Herein, we tackle this problem in silico using ab initio molecular dynamics (AIMD) simulations, employing iso-CHBr3, namely H(Br)C-Br-Br, as a prototypical system. This species was chosen because it features both a non-conventional C-Br-Br bonding pattern, as well as a strong dependence of its spectral features on the local environment in which it resides, as illustrated in recent experimental reports. The spectroscopic properties of iso-CHBr3 were measured by several groups that captured this transient intermediate in the photochemistry of CHBr3 in the gas phase, in rare gas matrices at 5K, and in solution under ambient laboratory conditions. We simulate the UV-Vis and IR spectra of iso-CHBr3 in all three media, including a Ne cluster (64 atoms) and a methylcyclohexane cage (14 solvent molecules) representative of the matrix isolated and solvated species. We exclusively perform fully quantum mechanical static and dynamic simulations. By comparing our condensed phase simulations to their experimental analogues, we stress the importance of (i)more » conformational sampling, even at cryogenic temperatures, and (ii) using a fully quantum mechanical description of both solute and bath to properly account for the experimental observables.« less
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1089-5639; 49115; KC0301050
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory; Journal Volume: 120; Journal Issue: 4
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Environmental Molecular Sciences Laboratory