skip to main content

SciTech ConnectSciTech Connect

This content will become publicly available on November 3, 2016

Title: Conformation of ionizable poly Para phenylene ethynylene in dilute solutions

The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonyl PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.
 [1] ;  [1] ;  [1] ;  [2]
  1. Clemson Univ., Clemson, SC (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0887-6266; 603941; TRN: US1600396
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Polymer Science. Part B, Polymer Physics
Additional Journal Information:
Journal Volume: 54; Journal Issue: 5; Journal ID: ISSN 0887-6266
Research Org:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
74 ATOMIC AND MOLECULAR PHYSICS molecular simulations; luminescent polymers