skip to main content

SciTech ConnectSciTech Connect

This content will become publicly available on January 19, 2017

Title: Zero added oxygen for high quality sputtered ITO. A data science investigation of reduced Sn-content and added Zr

Here, we demonstrate mobilities of >45 cm2/V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO2, instead of the more conventional 8–10 wt. %, and had varying ZrO2 content from 0 to 3 wt. %, with a subsequent reduction in In2O3 content. Moreover, these films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discovered for nominally similar growth conditions. However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. Our result is attributed to the reduced concentration of SnO2. The addition of ZrO2 yielded the highest mobilities at >55 cm2/V s and the films showed a modest increase in optical transmission with increasing Zr-content.
 [1] ;  [1] ;  [1] ;  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0734-2101; JVTAD6
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films
Additional Journal Information:
Journal Volume: 34; Journal Issue: 2; Journal ID: ISSN 0734-2101
American Vacuum Society
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
14 SOLAR ENERGY; 36 MATERIALS SCIENCE thin films; sputter deposition; electrical resistivity; carrier density; high pressure