skip to main content

SciTech ConnectSciTech Connect

Title: Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans, etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system throughmore » the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.« less
 [1] ;  [1] ;  [2]
  1. Malaviya National Institute of Technology (MNIT), Jaipur, India
  2. ORNL
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: ASHRAE Winter Conference, Orlando, FL, USA, 20160123, 20160127
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
EE USDOE - Office of Energy Efficiency and Renewable Energy (EE)
Country of Publication:
United States
Radiant Cooling System; Building Energy Simulation; Energy Saving; EnergyPlus; DOAS