skip to main content

SciTech ConnectSciTech Connect

This content will become publicly available on January 29, 2017

Title: α, α', α", α'"-meso-tetrahexyltetramethyl-calix[4]pyrrole: An easy-to-prepare, isomerically pure anion extractant with enhanced solubility in organic solvents

α, α', α", α'"-meso-Tetrahexyltetramethyl-calix[4]pyrrole is easily obtained as a single diastereomer in a one-pot reaction. It exhibits enhanced solubility in organic solvents, including aliphatic solvents, relative to its parent meso-octamethylcalix[4]pyrrole (1). Somewhat surprisingly, the tetrahexyl derivative 2 complexes with tributylmethylammonium chloride in chloroform more strongly than does 1 as shown by NMR titrations. However, 1 and 2 exhibit comparable complexation strength in extraction experiments, the difference between the NMR and extraction results being attributed to the effect of organic-phase water in the extraction systems. Mass-action analysis indicates the formation of the predominant complex TBMA+(1 or 2)Cl in both NMR and extraction systems, and equilibrium constants are reported. x-Ray crystal structures were obtained for the free ligand 2 and its complex with tetramethylammonium chloride. In addition, the free ligand crystallises in the 1,3-alt conformation with equatorial hexyl arms. In the chloride complex with 2 in its cone conformation, the hexyl arms adopt an axial orientation, enveloping the anion. DFT calculations show this binding conformation to be the most stable, mostly owing to destabilising steric interactions involving the pyrrole C–H and alkyl C–H groups positioned equatorially.
 [1] ;  [2] ;  [2] ;  [3] ;  [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Texas, Austin, TX (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Supramolecular Chemistry
Additional Journal Information:
Journal Volume: 28; Journal Issue: 1-2; Journal ID: ISSN 1061-0278
Taylor & Francis
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY pyrrole; solubility; anion binding; chloride; extraction