skip to main content

SciTech ConnectSciTech Connect

Title: Application of high performance computing for studying cyclic variability in dilute internal combustion engines

Combustion instabilities in dilute internal combustion engines are manifest in cyclic variability (CV) in engine performance measures such as integrated heat release or shaft work. Understanding the factors leading to CV is important in model-based control, especially with high dilution where experimental studies have demonstrated that deterministic effects can become more prominent. Observation of enough consecutive engine cycles for significant statistical analysis is standard in experimental studies but is largely wanting in numerical simulations because of the computational time required to compute hundreds or thousands of consecutive cycles. We have proposed and begun implementation of an alternative approach to allow rapid simulation of long series of engine dynamics based on a low-dimensional mapping of ensembles of single-cycle simulations which map input parameters to output engine performance. This paper details the use Titan at the Oak Ridge Leadership Computing Facility to investigate CV in a gasoline direct-injected spark-ignited engine with a moderately high rate of dilution achieved through external exhaust gas recirculation. The CONVERGE CFD software was used to perform single-cycle simulations with imposed variations of operating parameters and boundary conditions selected according to a sparse grid sampling of the parameter space. Using an uncertainty quantification technique, the sampling scheme ismore » chosen similar to a design of experiments grid but uses functions designed to minimize the number of samples required to achieve a desired degree of accuracy. The simulations map input parameters to output metrics of engine performance for a single cycle, and by mapping over a large parameter space, results can be interpolated from within that space. This interpolation scheme forms the basis for a low-dimensional metamodel which can be used to mimic the dynamical behavior of corresponding high-dimensional simulations. Simulations of high-EGR spark-ignition combustion cycles within a parametric sampling grid were performed and analyzed statistically, and sensitivities of the physical factors leading to high CV are presented. With these results, the prospect of producing low-dimensional metamodels to describe engine dynamics at any point in the parameter space will be discussed. Additionally, modifications to the methodology to account for nondeterministic effects in the numerical solution environment are proposed« less
 [1] ;  [1] ;  [1] ;  [1]
  1. ORNL
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: ASME 2015 Internal Combustion Engine Division Fall Technical Conference, Houston, TX, USA, 20151108, 20151111
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org:
EE USDOE - Office of Energy Efficiency and Renewable Energy (EE)
Country of Publication:
United States