skip to main content

SciTech ConnectSciTech Connect

This content will become publicly available on January 16, 2017

Title: Dimensional isotropy of 6H and 3C SiC under neutron irradiation

This investigation experimentally determines the as-irradiated crystal axes dimensional change of the common polytypes of SiC considered for nuclear application. Single crystal α-SiC (6H), β-SiC (3C), CVD β-SiC, and single crystal Si have been neutron irradiated near 60 °C from 2 × 1023 to 2 × 1026 n/m2 (E > 0.1 MeV), or about 0.02–20 dpa, in order to study the effect of irradiation on bulk swelling and strain along independent crystalline axes. Single crystal, powder diffractometry and density measurement have been carried out. For all neutron doses where the samples remained crystalline all SiC materials demonstrated equivalent swelling behavior. Moreover the 6H–SiC expanded isotropically. The magnitude of the swelling followed a ~0.77 power law against dose consistent with a microstructure evolution driven by single interstitial (carbon) mobility. Extraordinarily large ~7.8% volume expansion in SiC was observed prior to amorphization. Above ~0.9 × 1025 n/m2 (E > 0.1 MeV) all SiC materials became amorphous with an identical swelling: a 11.7% volume expansion, lowering the density to 2.84 g/cm3. As a result, the as-amorphized density was the same at the 2 × 1025 and 2 × 1026 n/m2 (E > 0.1 MeV) dose levels.
 [1] ;  [2] ;  [2] ;  [2] ;  [2]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Nuclear Materials
Additional Journal Information:
Journal Volume: 471; Journal Issue: C; Journal ID: ISSN 0022-3115
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE)
Country of Publication:
United States