skip to main content

SciTech ConnectSciTech Connect

Title: Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells

This research project addresses one of the goals of the U.S. Department of Energy (DOE) Carbon Storage Program (CSP) aimed at developing Advanced Wellbore Integrity Technologies to Ensure Permanent Geologic Carbon Storage. The technology field-tested in this research project is referred to as microbially induced calcite precipitation (MICP), which utilizes a biologically-based process to precipitate calcium carbonate. If properly controlled MICP can successfully seal fractures, high permeability zones, and compromised wellbore cement in the vicinity of wellbores and in nearby caprock, thereby improving the storage security of geologically-stored carbon dioxide. This report describes an MICP sealing field test performed on a 24.4 cm (9.625 inch) diameter well located on the Gorgas Steam Generation facility near Jasper, Alabama. The research was aimed at (1) developing methods for delivering MICP promoting fluids downhole using conventional oil field technologies and (2) assessing the ability of MICP to seal cement and formation fractures in the near wellbore region in a sandstone formation. Both objectives were accomplished successfully during a field test performed during the period April 1-11, 2014. The test resulted in complete biomineralization sealing of a horizontal fracture located 340.7 m (1118 feet) below ground surface. A total of 24 calcium injections andmore » six microbial inoculation injections were required over a three day period in order to achieve complete sealing. The fractured region was considered completely sealed when it was no longer possible to inject fluids into the formation without exceeding the initial formation fracture pressure. The test was accomplished using conventional oil field technology including an 11.4 L (3.0 gallon) wireline dump bailer for injecting the biomineralization materials downhole. Metrics indicating successful MICP sealing included reduced injectivity during seal formation, reduction in pressure falloff, and demonstration of MICP by-products including calcium carbonate (CaCO3) in treated regions of side wall cores. This project successfully integrated mesoscale laboratory experiments at the Center for Biofilm Engineering (CBE) together with simulation modeling conducted at the University of Stuttgart to develop the protocol for conducting the biomineralization sealing test in the field well.« less
  1. Montana State Univ., Bozeman, MT (United States)
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Montana State Univ., Bozeman, MT (United States)
Sponsoring Org:
Country of Publication:
United States