skip to main content

SciTech ConnectSciTech Connect

Title: Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition

We describe in this report the electrochemistry of Mg deposition and dissolution from the magnesium aluminum chloride complex (MACC). The results define the requirements for reversible Mg deposition and definitively establish that voltammetric cycling of the electrolyte significantly alters its composition and performance. Elemental analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (SEM-EDS) results demonstrate that irreversible Mg and Al deposits form during early cycles. Electrospray ionization-mass spectrometry (ESI-MS) data show that inhibitory oligomers develop in THF-based solutions. These oligomers form via the well-established mechanism of a cationic ring-opening polymerization of THF during the initial synthesis of the MACC and under resting conditions. In contrast, MACC solutions in 1,2-dimethoxyethane (DME), an acyclic solvent, do not evolve as dramatically at open circuit potential. Furthermore, we propose a mechanism describing how the conditioning process of the MACC in THF improves its performance by both tuning the Mg:Al stoichiometry and eliminating oligomers.
 [1] ;  [1] ;  [2] ;  [1] ;  [1]
  1. Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1932-7447; 537642
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 118; Journal Issue: 48; Journal ID: ISSN 1932-7447
American Chemical Society
Research Org:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Mg-ion battery; Mg electrodeposition; magnesium aluminum chloride complex; ring-opening polymerization