skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: VersiCharge-SG - Smart Grid Capable Electric Vehicle Supply Equipment (EVSE) for Residential Applications

Technical Report ·
DOI:https://doi.org/10.2172/1234438· OSTI ID:1234438
 [1];  [1];  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)

In his 2011 State of the Union address, President Obama called for one million electric vehicles on the road by 2015 [1]. With large-scale Electric Vehicle (EV) or Plug-in Electric Vehicle (PEV or EV for short) or Plug-in Hybrid Electric Vehicle (PHEV) penetration into the US market, there will be drastic reduction in fossil fuel consumption, thus significantly reducing our dependency on foreign oil [2-6]. There will also be significant reduction on Green House Gas (GHG) emissions and smog in the major US cities [3, 7, 8]. Similar studies have also been done other industrial counties [9]. For the fuel cost, with the home electricity rate around $0.13 per kWh, it would cost about $0.05 per mile for DC operation and $0.03 cents per mile for AC operation. But, assuming 25 miles per gallon for a typical vehicle and $4 per gallon, fossil fuel will cost $0.16 per mile [10]. The overall lifecycle cost of PEVs will be several folds lower than the existing fossil fueled vehicles. Despite the above advantages of the EVs, the current cost of EVSE is not affordable for the average consumer. Presently, the cost of installing state-of-the-art residential EVSE ranges from $1500 to $2500 [11]. Low priced EVSE technology, which is easy to install, and affordable to operate and maintain by an average consumer, is essential for the large-scale market penetration of EVs. In addition, the long-term success of this technology is contingent on the PEVs having minimal excessive load and shift impact on the grid, especially at peak times. In a report [2] published by the Pacific Northwest National Laboratory (PNNL), the exiting electric power generation infrastructure, if used at its full capacity 24 hours a day, would support up to 84% of the nation’s cars, pickup trucks and SUVs for an average daily drive of 33 miles. This mileage estimate is certainly much below what an average driver would drive his/her vehicle per day. Another report [3] by the National Renewable Energy Laboratory (NREL) shows that an increased PEV penetration would significantly increase pressure on the peak generation, if no controlled charging strategy was put in place. Investigations from Oak Ridge National Laboratory (ORNL) show that in many regions, additional power generation facilities must be put in place and operate in evening times to recharge the EVs [12]. By all accounts, large PEV penetration will bring to the power grid enormous challenges due to the excessive and stochastic demand, and can entirely change the peak time distribution and behavior, perhaps, into a bi-modal distribution capable of exhausting primary, secondary and even reserves (spinning or non-spinning). To minimize the infrastructure upgrade costs and risks to the grid, and to ensure that power quality and reliability remain within the set standards, the demand for EV plug-ins must then be controlled and coordinated locally and at regional levels. Novel control techniques must be devised to allow for close collaboration between neighboring plug-in requestors, between neighboring communities, and between these and more central power authorities. The concept of electric drive vehicle is not new. The development of electric vehicle has been around since 19th century [13]. But due to a number of reasons and practical limitations at the time, including lower cost of gasoline compared to electricity, excessive refueling times, and abundance of gasoline, the automobile industry embraced gasoline-powered vehicles worldwide [13]. With the global warming, ever reducing reservoirs of fossil oil around the world and increasing political pressure to reduce the national dependency on foreign oil, the last decade of the 20th century witnessed major technological breakthroughs in Alternative Fueled Vehicle (AFV) technologies, including electric vehicles. With GHG emissions and carbon footprint in the minds of many more consumers and politicians, the first decade of the 21stCentury witnessed more breakthroughs with some real life experimentation and sporadic deployment of these technologies [14]. By many accounts, the second decade of the 21st Century is expected to be the time when mass volume production and popular usage of these AFV technologies, especially EV, will materialize. The current DOE request for proposals recognizes the need for major technological changes to ensure that the above national goal is realizable. Two major challenges have been identified: (1) major reduction in the cost of ownership of EVSEs, and (2) managing additional EV loads in the power grid while maintaining power quality, reliability, and affordability. We note that the two challenges are closely linked – A holistic approach to true lifecycle cost of EVSE ownership will certainly include any taxes and surcharges that can be put in place for major potential investments in the grid, and higher electricity charges in case of more frequent and longer peak periods. From a societal perspective, this cost could also include the lost GDP (computed on a local basis) and revenue for businesses at local and regional levels when the grid is no longer capable of meeting the demand and unexpected outages occur. A typical end-point electrical distribution system delivers power to a residential EVSE from the neighborhood distribution pole, as shown in Fig.1. This pole has a transformer (neighboring step-down transformer) that steps down the utility medium voltage to dual 120VAC single phase (also called 240VAC split phase). This voltage is fed through a meter into the residential load control center. The load control center consists of branch circuit breakers and distributes the power supply within various areas of the residential unit. One of the branch circuits from the load control center feeds EV charging station for the unit. An electric vehicle charger is plugged into the socket of the EV charging station and other end of this charger is connected to the vehicle during charging. Figure 1 illustrates a typical configuration of the power grid. The left side of the figure shows the power grid from the power generation to the neighboring step-down transformer, while the right side of the figure shows multiple EVs with the respective charging stations. The typical step-down transformer has an upper limit representing the maximum load that can be requested from these neighboring houses altogether (typically 24 kW). In case the total load increases beyond the supported limit, the protection system (e.g. a circuit breaker) attached to the step-down transformer gets activated automatically.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States); Siemens Corporation, Munich (Germany)
Sponsoring Organization:
USDOE
DOE Contract Number:
OE0000587
OSTI ID:
1234438
Country of Publication:
United States
Language:
English