skip to main content

SciTech ConnectSciTech Connect

Title: Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr1+, Zr2+, and Zr3+ as non-equilibrium oxidation states, in addition to Zr4+ in the stoichiometric ZrO2. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr0 and Zr4+ at the metal-oxide interface. As a result, the presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.
 [1] ;  [2] ;  [1] ;  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0003-6951; APPLAB; R&D Project: CO009; KC0302010
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 106; Journal Issue: 10; Journal ID: ISSN 0003-6951
American Institute of Physics (AIP)
Research Org:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY oxidation; electric fields; surface oxidation; photoelectron spectra; X-ray photoelectron spectroscopy