skip to main content

SciTech ConnectSciTech Connect

Community detection has become a fundamental operation in numerous graph-theoretic applications. It is used to reveal natural divisions that exist within real world networks without imposing prior size or cardinality constraints on the set of communities. Despite its potential for application, there is only limited support for community detection on large-scale parallel computers, largely owing to the irregular and inherently sequential nature of the underlying heuristics. In this paper, we present parallelization heuristics for fast community detection using the Louvain method as the serial template. The Louvain method is an iterative heuristic for modularity optimization. Originally developed by Blondel et al. in 2008, the method has become increasingly popular owing to its ability to detect high modularity community partitions in a fast and memory-efficient manner. However, the method is also inherently sequential, thereby limiting its scalability. Here, we observe certain key properties of this method that present challenges for its parallelization, and consequently propose heuristics that are designed to break the sequential barrier. For evaluation purposes, we implemented our heuristics using OpenMP multithreading, and tested them over real world graphs derived from multiple application domains (e.g., internet, citation, biological). Compared to the serial Louvain implementation, our parallel implementation is ablemore » to produce community outputs with a higher modularity for most of the inputs tested, in comparable number of iterations, while providing real speedups of up to 8x using 32 threads. In addition, our parallel implementation was able to exhibit weak scaling properties on up to 32 threads.« less
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Software Revision:
Software Package Number:
Software Package Contents:
Open Source Software package available from the following URL:
Software CPU:
Open Source:
Source Code Available:
Research Org:
Pacific Northwest National Laboratory
Sponsoring Org:
United States Department of Energy
Country of Publication:
United States

To initiate an order for this software, request consultation services, or receive further information, fill out the request form below. You may also reach us by email at: .

ESTSC staff will begin to process an order for scientific and technical software once the payment and signed site license agreement are received. If the forms are not in order, ESTSC will contact you. No further action will be taken until all required information and/or payment is received. Orders are processed within three to five business days.

Software Request