skip to main content

SciTech ConnectSciTech Connect

Title: Probing Battery Chemistry with Liquid Cell Electron Energy Loss Spectroscopy

We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. The use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. Furthermore, we discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.
 [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1359-7345
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: ChemComm; Journal Volume: 51; Journal Issue: 91; Related Information: Chemical Communications
Research Org:
NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
Country of Publication:
United States
25 ENERGY STORAGE electron energy loss spectroscopy; EELS; battery electrodes; battery solvent