skip to main content

SciTech ConnectSciTech Connect

Title: Cyber Security Research Frameworks For Coevolutionary Network Defense

Several architectures have been created for developing and testing systems used in network security, but most are meant to provide a platform for running cyber security experiments as opposed to automating experiment processes. In the first paper, we propose a framework termed Distributed Cyber Security Automation Framework for Experiments (DCAFE) that enables experiment automation and control in a distributed environment. Predictive analysis of adversaries is another thorny issue in cyber security. Game theory can be used to mathematically analyze adversary models, but its scalability limitations restrict its use. Computational game theory allows us to scale classical game theory to larger, more complex systems. In the second paper, we propose a framework termed Coevolutionary Agent-based Network Defense Lightweight Event System (CANDLES) that can coevolve attacker and defender agent strategies and capabilities and evaluate potential solutions with a custom network defense simulation. The third paper is a continuation of the CANDLES project in which we rewrote key parts of the framework. Attackers and defenders have been redesigned to evolve pure strategy, and a new network security simulation is devised which specifies network architecture and adds a temporal aspect. We also add a hill climber algorithm to evaluate the search space and justifymore » the use of a coevolutionary algorithm.« less
 [1] ;  [2]
  1. Missouri Univ. of Science and Technology, Rolla, MO (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
Country of Publication:
United States