skip to main content

SciTech ConnectSciTech Connect

Title: Collaborative Proposal. Development of an Isotope-Enabled CESM for Testing Abrupt Climate Changes

We have made significant landmarks in our proposed work in the last 4 years (3 years plus 1 year of no cost extension). We have developed the simulation capability of the major isotopes in CESM. In particular, we have completed the implementation of the stable water isotopes (δ18O, δD) into the components for the atmosphere, ocean, land surface, runoff transport, sea ice, and coupler. In addition, the carbon isotopes (abiotic and biotic radiocarbon, δ13 C) have been implemented into the CESM ocean and land models, and long spinup simulations have been completed (Jahn et al., 2015). Furthermore, we have added abiotic Neodymium to the CESM ocean model as a tracer of ocean circulation, also measured by the proxy data community. Fullycoupled simulations with the stable water isotopes and ocean radiocarbon are currently being run for the preindustrial and also the Last Glacial Maximum. We have secured 19 million core-hours on the NWSC Yellowstone supercomputer for 12 months. Together with some CESM Paleoclimate Working Group CSL Yellowstone core hours, we are guaranteed sufficient computing for the spin-up experiments and deglaciation simulations for 21 to 15ka.
  1. National Center for Atmospheric Research, Boulder, CO (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
University Corporation For Atmospheric Research (UCAR), Boulder, CO (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States