skip to main content

SciTech ConnectSciTech Connect

Title: Spin reorientation and Ce-Mn coupling in antiferromagnetic oxypnictide CeMnAsO

Structure and magnetic properties of high-quality polycrystlline CeMnAsO, a parent compound of the “1111”-type oxypnictides, have been investigated using neutron powder diffraction and magnetization measurements. We find that CeMnAsO undergoes a C-type antiferromagnetic order with Mn2+(S = 5/2) moments pointing along the c axis below a relatively high Néel temperature of TN = 347(1) K. Below TSR = 35 K, two simultaneous transitions occur where the Mn moments reorient from the c axis to the ab plane preserving the C-type magnetic order, and Ce moments undergo long-range AFM ordering with antiparallel moments pointing in the ab plane. Another transition to a noncollinear magnetic structure occurs below 7 K. The ordered moments of Mn and Ce at 2 K are 3.32(4) μB and 0.81(4)μB, respectively. We find that CeMnAsO primarily falls into the category of a local-moment antiferromagnetic insulator in which the nearest-neighbor interaction (J1) is dominant with J2 < J1/2 in the context of J1 – J2 – Jc model. The spin reorientation transition driven by the coupling between Ce and the transition metal seems to be common to Mn, Fe, and Cr ions, but not to Co and Ni ions in the isostructural oxypnictides. As a result, a schematicmore » illustration of magnetic structures in Mn and Ce sublattices in CeMnAsO is presented.« less
 [1] ;  [2] ;  [1] ;  [3] ;  [1]
  1. Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Ames Lab., Ames, IA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1098-0121; PRBMDO
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 91; Journal Issue: 6; Journal ID: ISSN 1098-0121
American Physical Society (APS)
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States