skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Influence of Constitutional Supercooling on the Distribution of Te-particles in Melt-Grown CZT

Journal Article · · Journal of Electronic Materials

A section of a vertical gradient freeze Cd0.9Zn0.1Te boule approximately 2100-mm3 with a planar area of 300-mm2 was prepared and examined using transmitted IR microscopy at various magnifications to determine the three-dimensional spatial and size distributions of Te-particles over large longitudinal and radial length scales. Te-particle density distributions were determined as a function of longitudinal and radial positions in these strips and exhibited a multi-modal lognormal size density distribution that indicated a slight preference for increasing size with longitudinal growth time, while showing a pronounced cellular network structure. Higher magnification images revealed a typical Rayleigh-instability pearl string morphology with large and small satellite droplets. This study includes solidification experiments in small crucibles of 30:70 mixtures of Cd:Te performed over a wide range of cooling rates that clearly demonstrated a growth instability with Te-particle capture that is suggested to be responsible for one of the peaks in the size distribution using size discrimination visualization. The results are discussed with regard to a manifold Te-particle genesis history as Te-particle direct capture from melt-solid growth instabilities due to constitutional supercooling and as Te-particle formation from the breakup of Te-ribbons via a Rayleigh-Plateau instability.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1225140
Report Number(s):
PNNL-SA-107729; NN2001000
Journal Information:
Journal of Electronic Materials, Vol. 44, Issue 11; ISSN 0361-5235
Publisher:
Springer
Country of Publication:
United States
Language:
English