skip to main content

SciTech ConnectSciTech Connect

Title: Semiconductor-electrocatalyst contacts: theory, experiment, and applications to solar water photoelectrolysis

Semiconductor photoelectrodes coated with electrocatalysts are key components of photoelectrochemical (PEC) energy conversion and storage systems. Such systems could provide a way to convert the energy in sunlight directly into energy stored in a fuel like hydrogen gas to power our modern society without using fossil fuels. Despite an intense effort aimed at optimizing these materials, there has been little systematic work focused on the semiconductor-electrocatalyst (SC|EC) interface. The SC|EC interface is important because it is responsible for collecting the photoexcited electron-hole pairs generated in the semiconductor. During the performance period we initiated a fundamental effort to understand interfacial electron transfer between electrocatalysts and bulk semiconductors. We developed an experimental technique, dual-working-electrode (DWE) photoelectrochemistry, allowing for direct electrical measurement of the SC-EC interface in situ. We also developed the first theory of the SC|EC interface and applied the theory through numerical simulation to explain the measured interfacial charge transfer properties of the SC|EC junction. We discovered that porous, ion-permeable, redox-active catalysts such as Ni-(Fe) oxyhydroxides form so-called “adaptive” junctions where the effective interfacial barrier height for electron transfer depends on the charge state of the catalyst. This is in sharp contrast to interface properties of dense ion-impermeable catalysts, which wemore » found form buried junctions that could be described by simple equivalent electrical circuits. These results elucidated a design principle for catalyzed photoelectrodes - high-performance photoelectrodes with direct SC|EC junctions use soft deposition techniques that yield ion-permeable catalysts. This work thus provides a foundation for the development of improved photoelectrodes that are practically relevant because they provide a mechanism to directly convert and store solar energy in the form of hydrogen gas, a renewable chemical fuel.« less
  1. Univ. of Oregon, Eugene, OR (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Univ. of Oregon, Eugene, OR (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States