skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of Constituent Properties on Performance Improvement of a Quenching and Partitioning Steel

Conference ·
DOI:https://doi.org/10.4271/2014-01-0812· OSTI ID:1222142

In this paper, a two-dimensional microstructure-based finite element modeling method is adopted to investigate the effects of material parameters of the constituent phases on the macroscopic tensile behavior of Q&P steel and then to do a computational materials design approach for its performance improvement. For this purpose, a model Q&P steel is first produced and various experiments are then performed to characterize the steel. Actual microstructure-based model is generated based on the information from EBSD, SEM and nano-indentation test, and the material properties for the constituent phases are determined based on the initial constituents’ properties from HEXRD test and the subsequent calibration of model prediction to tensile test results. Influence of various material parameters of the constituents on the macroscopic behaviors is then investigated by separately adjusting them by small amount. Based on the observation on the respective influence of constituents’ material parameters, a new set of material parameters are devised, which results in better performance in ductility. The results indicate that various material parameters may need to be concurrently adjusted in a cohesive way in order to improve the performance of Q&P steel. In summary, higher austenite stability, less strength difference between the phases, higher hardening exponents of the phases are generally beneficial for the performance improvement. The information from this study can be used to devise new Q&P heat-treating parameters to produce the Q&P steels with better performance.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1222142
Report Number(s):
PNNL-SA-99960; VT0505000
Resource Relation:
Conference: SAE 2014 World Congress, April 8-10, 2014, Detroit, Michigan, Paper No. 2014-01-0812
Country of Publication:
United States
Language:
English

Similar Records

Application of Nano-Indentation Test in Estimating Constituent Phase Properties for Microstructure-Based Modeling of Multiphase Steels
Journal Article · Sun Feb 05 00:00:00 EST 2017 · SAE International Journal of Engines (Online) · OSTI ID:1222142

Characterization of Stress and Strain Partitioning for Advanced High Strength Steels by in-situ HIgh Energy X-Ray Diffraction
Journal Article · Wed Sep 01 00:00:00 EDT 2010 · Ye jin fen xi = Metallurgical Analysis · OSTI ID:1222142

Crystal plasticity modeling of 3rd generation multi-phase AHSS with martensitic transformation
Journal Article · Mon Apr 01 00:00:00 EDT 2019 · International Journal of Plasticity · OSTI ID:1222142