skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the properties of Au2₂P₃z (z = -1, 0, +1): analysis of geometry, interaction, and electron density

Journal Article · · RSC Advances, 5(33):26071-26080
DOI:https://doi.org/10.1039/C5RA00131E· OSTI ID:1222093

Au₂P₃, the only metastable binary phase of gold phosphide, has been discovered to exhibit remarkable semiconductor properties among metal phosphides. A systematic study on the geometry, the transformation of Au₂P₃ into different valence states and the different interactions among the atoms of the species is performed by using the density functional theory (DFT) method. The global minimum of Au₂P₃- is a 3D structure with Cs symmetry. This structure could be distorted from a planar configuration of Au₂P₃ which decreases the steric effect on it and leads to a new stable configuration. An analogous planar configuration, a local minimum rather than a global minimum, is also found in Au₂P₃⁺, due to the electron effect acting on the structure. Natural bond orbital (NBO) analysis reveals the re-distribution progression of the charge within the species. The central located Au atom and another no. 5 positioned P atom play significant roles on the structures. P5, as an electron adjuster, balances the electron distribution at different valence states of the structures. Deformation density analysis supplies information about charge transfer and the bonding type between two adjacent atoms as well. Looking deep into the bonding types, as electron localization function (ELF) suggests, the interaction between two adjacent P atoms (P3 and P4) of Au₂P₃ belongs to a strong covalent bond. The Au–P interactions among the configurations could be classified as weak classical covalent bonds through the atoms in molecules (AIM) dual parameter analysis. And for the first time, the weak interaction between the two adjacent Au atoms (Au1 and Au2) of the charged states of Au₂P₃ (Au₂P₃⁻ and Au₂P₃⁺), are verified and different from the neutral Au₂P₃ through the reduced density gradient (RDG) analysis.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1222093
Journal Information:
RSC Advances, 5(33):26071-26080, Journal Name: RSC Advances, 5(33):26071-26080
Country of Publication:
United States
Language:
English

Similar Records

Relativistic Effects and Gold Site Distributions: Synthesis, Structure, and Bonding in a Polar Intermetallic Na6Cd16Au7
Journal Article · Tue Jul 05 00:00:00 EDT 2011 · Inorganic Chemistry · OSTI ID:1222093

Materials Data on Au2S by Materials Project
Dataset · Thu Jul 16 00:00:00 EDT 2020 · OSTI ID:1222093

Electron Density Distributions Calculated For The Ni-Sulfides Millerite, Vaesite and Heazlewoodite and Nickel Metal: A case for The Importance Of NiNi Bond Paths For Electron Transport
Journal Article · Sat Dec 24 00:00:00 EST 2005 · Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical · OSTI ID:1222093