skip to main content

SciTech ConnectSciTech Connect

Title: An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratorymore » pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less
 [1] ;  [1] ;  [1] ;  [1]
  1. University of Minnesota-Twin Cities, Saint Paul, MN (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
mBio (Online)
Additional Journal Information:
Journal Name: mBio (Online); Journal Volume: 5; Journal Issue: 6; Journal ID: ISSN 2150-7511
American Society for Microbiology
Research Org:
University of Minnesota-Twin Cities, Saint Paul, MN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States