skip to main content

SciTech ConnectSciTech Connect

Title: Strategies to Suppress Cation Vacancies in Metal Oxide Alloys: Consequences for Solar Energy Conversion

First-row transition metal oxides (TMOs) are promising alternative materials for inexpensive and efficient solar energy conversion. However, their conversion efficiency can be deleteriously affected by material imperfections, such as atomic vacancies. In this work, we provide examples showing that in some iron-containing TMOs, iron cation vacancy formation can be suppressed via alloying. We calculate within density functional theory+U theory the iron vacancy formation energy in binary rock-salt oxide alloys that contain iron, manganese, nickel, zinc, and/or magnesium. We demonstrate that formation of iron vacancies is less favorable if we choose to alloy iron(II) oxide with metals that cannot readily accept vacancy-generated holes, e.g., magnesium, manganese, nickel, or zinc. Since there are less available sites for holes and the holes are forced to reside on iron cations, the driving force for iron vacancy formation decreases. These results are consistent with an experiment observing a sharp drop in cation vacancy concentration upon alloying iron(II) oxide with manganese.
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Materials Science, 50(17):5715-5722
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Environmental Molecular Sciences Laboratory