skip to main content

SciTech ConnectSciTech Connect

Title: Strongly enhanced vortex pinning from 4 to 77 K in magnetic fields up to 31 T in 15 mol.% Zr-added (Gd, Y)-Ba-Cu-O superconducting tapes

Applications of REBCO coated conductors are now being developed for a very wide range of temperatures and magnetic fields and it is not yet clear whether vortex pinning strategies aimed for high temperature, low field operation are equally valid at lower temperatures and higher fields. A detailed characterization of the superconducting properties of a 15 mol.% Zr-added REBCO thin film made by metal organic chemical vapor deposition, from 4.2 to 77 K under magnetic fields up to 31 T is presented in this article. Even at a such high level of Zr addition, T-c depression has been avoided (T-c = 91 K), while at the same time an exceptionally high irreversibility field H-irr approximate to 14.8 T at 77 K and a remarkably high vortex pinning force density F-p approximate to 1.7 TN/m(3) at 4.2 K have been achieved. We ascribe the excellent pinning performance at high temperatures to the high density (equivalent vortex matching field similar to 7 T) of self-assembled BZO nanorods, while the low temperature pinning force is enhanced by large additional pinning which we ascribe to strain-induced point defects induced in the REBCO matrix by the BZO nanorods. Our results suggest even more room for furthermore » performance enhancement of commercial REBCO coated conductors and point the way to REBCO coil applications at liquid nitrogen temperatures since the critical current density J(c)(H//c) characteristic at 77 K are now almost identical to those of fully optimized Nb-Ti at 4 K. (C) 2014 Author(s).« less
; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: APL Materials; Journal Volume: 2; Journal Issue: 4
Sponsoring Org:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
Country of Publication:
United States