skip to main content

SciTech ConnectSciTech Connect

Title: Block-oriented modeling of superstructure optimization problems

We present a novel software framework for modeling large-scale engineered systems as mathematical optimization problems. A key motivating feature in such systems is their hierarchical, highly structured topology. Existing mathematical optimization modeling environments do not facilitate the natural expression and manipulation of hierarchically structured systems. Rather, the modeler is forced to "flatten" the system description, hiding structure that may be exploited by solvers, and obfuscating the system that the modeling environment is attempting to represent. To correct this deficiency, we propose a Python-based "block-oriented" modeling approach for representing the discrete components within the system. Our approach is an extension of the Pyomo library for specifying mathematical optimization problems. Through the use of a modeling components library, the block-oriented approach facilitates a clean separation of system superstructure from the details of individual components. This approach also naturally lends itself to expressing design and operational decisions as disjunctive expressions over the component blocks. By expressing a mathematical optimization problem in a block-oriented manner, inherent structure (e.g., multiple scenarios) is preserved for potential exploitation by solvers. In particular, we show that block-structured mathematical optimization problems can be straightforwardly manipulated by decomposition-based multi-scenario algorithmic strategies, specifically in the context of the PySP stochastic programmingmore » library. We illustrate our block-oriented modeling approach using a case study drawn from the electricity grid operations domain: unit commitment with transmission switching and N - 1 reliability constraints. Finally, we demonstrate that the overhead associated with block-oriented modeling only minimally increases model instantiation times, and need not adversely impact solver behavior. (C) 2013 Elsevier Ltd. All rights reserved.« less
; ; ;
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Computers and Chemical Engineering; Journal Volume: 57
Sponsoring Org:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
Country of Publication:
United States