skip to main content

SciTech ConnectSciTech Connect

Title: Interactions between ingredients in IMX-101: Reactive Chemical Processes Control Insensitive Munitions Properties

Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS) measurements have been conducted on a new Insensitive Munitions (IM) formulation. IMX-101 is the first explosive to be fully IM qualified under new NATO STANAG guidelines for fielded munitions. The formulation uses dinitroanisole (DNAN) as a new melt cast material to replace TNT, and shows excellent IM performance when formulated with other energetic ingredients. The scope of this work is to explain this superior IM performance by investigating the reactive processes occurring in the material when subjected to a well-controlled thermal environment. The dominant reactive processes observed were a series of complex chemical interactions between the three main ingredients (DNAN, NQ, and NTO) that occurs well below the onset of the normal decomposition process of any of the individual ingredients. This process shifts the thermal response of the formulations to a much lower temperature, where the kinetically controlled reaction processes are much slower. This low temperature shift has the effect of allowing the reactions to consume the reactive solids (NQ, NTO) well before the reaction rates increase and reach thermal runaway, resulting in a relatively benign response to the external stimuli. The main findings on the interaction processes are presented.
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Sandia National Laboratories (SNL-CA), Livermore, CA (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States