skip to main content

SciTech ConnectSciTech Connect

Title: An accurate and efficient computational protocol for obtaining the complete basis set limits of the binding energies of water clusters at the MP2 and CCSD(T) levels of theory: Application to (H₂O)m, m=2-6, 8, 11, 16 and 17

We report MP2 and CCSD(T) binding energies with basis sets up to pentuple zeta quality for the m = 2-6, 8 clusters. Or best CCSD(T)/CBS estimates are -4.99 kcal/mol (dimer), -15.77 kcal/mol (trimer), -27.39 kcal/mol (tetramer), -35.9 ± 0.3 kcal/mol (pentamer), -46.2 ± 0.3 kcal/mol (prism hexamer), -45.9 ± 0.3 kcal/mol (cage hexamer), -45.4 ± 0.3 kcal/mol (book hexamer), -44.3 ± 0.3 kcal/mol (ring hexamer), -73.0 ± 0.5 kcal/mol (D2d octamer) and -72.9 ± 0.5 kcal/mol (S4 octamer). We have found that the percentage of both the uncorrected (dimer) and BSSE-corrected (dimerCPe) binding energies recovered with respect to the CBS limit falls into a narrow range for each basis set for all clusters and in addition this range was found to decrease upon increasing the basis set. Relatively accurate estimates (within < 0.5%) of the CBS limits can be obtained when using the “ 2/3, 1/3” (for the AVDZ set) or the “½ , ½” (for the AVTZ, AVQZ and AV5Z sets) mixing ratio between dimere and dimerCPe. Based on those findings we propose an accurate and efficient computational protocol that can be used to estimate accurate binding energies of clusters at the MP2 (for up to 100 molecules) andmore » CCSD(T) (for up to 30 molecules) levels of theory. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multi program national laboratory operated for DOE by Battelle. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. AC02-05CH11231.« less
 [1] ;  [1]
  1. Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0021-9606: JCPSA6; KC0301020
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 23
American Institute of Physics (AIP)
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Org:
Country of Publication:
United States