skip to main content

SciTech ConnectSciTech Connect

Title: Technical Note: On the use of nudging for aerosol-climate model intercomparison studies

Nudging is an assimilation technique widely used in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5, due to the systematic temperature bias in the standard model and the sensitivity of simulated ice formation to anthropogenic aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on longwave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud icemore » amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. This suggests nudging the horizontal winds but not temperature is a good strategy for the investigation of aerosol indirect effects through ice clouds, since it provides well-constrained meteorology without strongly perturbing the model's mean climate.« less
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Published Article
Journal Name:
Atmospheric Chemistry and Physics Discussions (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics Discussions (Online); Journal Volume: 14; Journal Issue: 7; Journal ID: ISSN 1680-7375
European Geosciences Union
Sponsoring Org:
Country of Publication: