skip to main content

SciTech ConnectSciTech Connect

Title: Nonthermally Dominated Electron Acceleration during Magnetic Reconnection in a Low-beta Plasma

This work was motivated by electron acceleration during solar flares. After some introductory remarks on proposed particle acceleration mechanisms and questions needing answers, dynamic simulations and simulation results are presented including energy spectra and the formation of the power law distribution. In summary, magnetic reconnection is highly efficient at converting the free magnetic energy stored in a magnetic shear and accelerating electrons to nonthermal energies in low-β regime. The nonthermal electrons have a dominant fraction and form power-law energy spectra with spectral index p ~ 1 in low-β regime. Electrons are preferentially accelerated along the curvature drift direction along the electric field induced by the reconnection outflow. The results can be applied to explain the observations of electron acceleration during solar flares.
  1. Los Alamos National Laboratory
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Plasma Energization: Exchanges between Fluid and Kinetic Scales ; 2015-05-04 - 2015-05-06 ; Los Alamos, New Mexico, United States
Research Org:
Los Alamos National Laboratory (LANL)
Sponsoring Org:
Country of Publication:
United States
79 ASTRONOMY AND ASTROPHYSICS Astronomy and Astrophysics