skip to main content

SciTech ConnectSciTech Connect

Title: Final Scientific/Technical Report – BISfuel EFRC

The vast majority of the country’s energy needs are met with fossil fuels in the form of natural gas, coal and oil. The use of these fossil fuels contributes to climate change, the unequal distribution of fossil fuel deposits in the earth leads to geopolitical and economic problems, and eventually, fossil fuels will be exhausted. Thus, a renewable, widely distributed, environmentally benign, and inexpensive substitute large enough to meet the needs of society is required. Solar energy meets these criteria. Solar energy may be converted to electricity by photovoltaics, but the need for a continuous energy supply and high-density energy requirements for transportation necessitate technology for storage of energy from sunlight in a fuel. Cost-effective technologies for solar fuel production do not exist, prompting the need for new fundamental science. Fuel production requires not only energy, but also a source of electrons and precursor materials suitable for reduction to useful fuels. Given the immense magnitude of the human energy requirement, the most reasonable source of electrons is water oxidation, and suitable precursor materials are hydrogen ions (for hydrogen gas production) and carbon dioxide (for production of reduced carbon fuels such as methane or methanol). Natural photosynthesis is the only provenmore » “technology” for solar fuel production. It harvests solar energy on a magnitude much larger than that necessary to fill human needs, and has done so for billions of years, creating fossil fuels along the way. BISfuel has approached the design of a complete system for solar water oxidation and hydrogen production by applying the fundamental principles of photosynthesis to the construction of synthetic components and their incorporation into an operational unit. In this artificial photosynthetic approach, the functional blueprint of photosynthesis is followed using non-biological materials. BISfuel brought together a group of investigators from the Department of Chemistry and Biochemistry at Arizona State University and integrated them into a cohesive, highly collaborative unit to attack the solar fuel problem. The investigators came from many disciplines, and worked together to apply their expertise in new areas in order to pursue Center goals. The primary goal, construction of a complete functional system for producing hydrogen fuel from water using sunlight, was realized, although much more work would be necessary to develop a practical device for doing so. The Center investigators discovered a great deal of important new chemistry, as is reported in 100 research publications and several patents and invention disclosures. A spin-off company was established based on some of the Center discoveries. Fundamental discoveries were made in the areas of molecular biotechnology, organic chemistry, inorganic chemistry, photochemistry, catalysis, materials science, physical chemistry and chemical physics. New instrumental techniques were developed, including femtosecond X-ray crystallography, which is an exciting approach to determination of the structures of both biological and synthetic molecules. The fundamental discoveries made by the Center will contribute to the development of not only solar fuel technologies, but also biomedical applications; technological uses of DNA; new materials for (opto)electronic, electrochemical, computational and display applications; fuel cells; industrial catalytic processes and related areas. In addition, Center studies of synthetic systems are leading to a better understanding of important natural biological systems, including natural photosynthesis.« less
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Arizona State University
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
14 SOLAR ENERGY solar fuel; artificial photosynthesis; hydrogen; water oxidation