skip to main content

SciTech ConnectSciTech Connect

Title: First-principles studies on molecular beam epitaxy growth of GaAs1-xBix

We investigate the molecular beam epitaxy (MBE) growth of GaAs1-xBix film using density functional theory with spin-orbit coupling to understand the growth of this film, especially the mechanisms of Bi incorporation. We study the stable adsorption structures and kinetics of the incident molecules (As₂ molecule, Ga atom, Bi atom, and Bi₂ molecule) on the (2 x 1)-Gasub||Bi surface and a proposed q(1 x 1)-Gasub||AsAs surface has a quasi-(1 x 1) As layer above the Ga-terminated GaAs substrate and a randomly oriented As dimer layer on top. We obtain the desorption and diffusion barriers of the adsorbed molecules and also the reaction barriers of three key processes related to Bi evolution, namely, Bi incorporation, As/Bi exchange, and Bi clustering. The results help explain the experimentally observed dependence of Bi incorporation on the As/Ga ratio and growth temperature. Furthermore, we find that As₂ exchange with Bi of the (2 x 1)-Gasub||Bi surface is a key step controlling the kinetics of the Bi incorporation. Finally, we explore two possible methods to enhance the Bi incorporation, namely, replacing the MBE growth mode from codeposition of all fluxes with a sequential deposition of fluxes and applying asymmetric in-plane strain to the substrate.
; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Publisher's Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 92; Journal Issue: 3; Journal ID: ISSN 1098-0121
American Physical Society
Sponsoring Org:
Country of Publication:
United States