skip to main content

SciTech ConnectSciTech Connect

Title: Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes

The use of α-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope ²¹³Bi is a nuclide that has found substantial use for targeted α-therapy (TAT). The relatively unexplored aqueous chemistry of Bi³⁺, however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (Lpy), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyd), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyr), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (Lpz), were prepared by a previously reported method and investigated here for their abilities to bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[(R)-2-amino-3-(p-isothiocyanato-phenyl)propyl]-trans-(S,S)- cyclohexane-1,2-diamine-N,N,N',N",N"-pentaacetic acid (CHX-A''-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, ²⁰⁷Bi (t1/2 = 32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi³⁺ and the generator parent ion Ac³⁺.In contrast to DOTA and CHX-A''-DTPA, these nitrogen-rich macrocycles selectively chelate Bi³⁺ in the presence of the parent isotope Ac³⁺. Among the four tested, Lpy wasmore » found to exhibit optimal Bi³⁺-binding kinetics and complex stability. Lpy complexes Bi³⁺ more rapidly than DOTA, yet the resulting complexes are of similar stability. DFT calculations corroborate the experimentally observed selectivity of these ligands for Bi³⁺ over Ac³⁺. Taken together, these data implicate Lpy as a valuable chelating agent for the delivery of ²¹³Bi. Its selectivity for Bi³⁺ and rapid and stable labeling properties warrant further investigation and biological studies.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0969-8051; PII: S0969805114005721; TRN: US1600595
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Nuclear Medicine and Biology
Additional Journal Information:
Journal Volume: 42; Journal Issue: 5; Journal ID: ISSN 0969-8051
Research Org:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org:
Country of Publication:
United States
62 RADIOLOGY AND NUCLEAR MEDICINE targeted α-therapy; bismuth-213; actinium-225; radiolabeling; radio-thin-layer chromatography; macrocycles