skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A work stealing based approach for enabling scalable optimal sequence homology detection

Journal Article · · Journal of Parallel and Distributed Computing
 [1];  [2];  [1];  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Washington State Univ., Pullman, WA (United States)

Sequence homology detection is central to a number of bioinformatics applications including genome sequencing and protein family characterization. Given millions of sequences, the goal is to identify all pairs of sequences that are highly similar (or “homologous”) on the basis of alignment criteria. While there are optimal alignment algorithms to compute pairwise homology, their deployment for large-scale is currently not feasible; instead, heuristic methods are used at the expense of quality. Here, we present the design and evaluation of a parallel implementation for conducting optimal homology detection on distributed memory supercomputers. Our approach uses a combination of techniques from asynchronous load balancing (viz. work stealing, dynamic task counters), data replication, and exact-matching filters to achieve homology detection at scale. Results for 2.56M sequences on up to 8K cores show parallel efficiencies of ~ 75-100%, a time-to-solution of 33s, and a rate of ~ 2.0M alignments per second.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1191793
Report Number(s):
PNNL-SA-103338; KJ0402000
Journal Information:
Journal of Parallel and Distributed Computing, Vol. 79-80, Issue C; ISSN 0743-7315
Country of Publication:
United States
Language:
English