skip to main content

SciTech ConnectSciTech Connect

Title: Black Carbon Radiative Forcing over the Tibetan Plateau

We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. Our best estimate of the annual BC snow albedo forcing in the Plateau is 2.9 W m-2 (uncertainty: 1.5–5.0 W m-226 ). We find that BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing and coated BC increases the forcing by 30-50% compared with uncoated BC, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. Our best estimate of the annual BC DRF at the top of the atmosphere is 2.3 W m-2 (uncertainty: 0.7–4.3 W m-230 ) in the Plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network (AERONET) observations. The BC forcings are attributed to emissions from different regions.
; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Geophysical Research Letters, 41(22):7806-7813
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Org:
Country of Publication:
United States
black carbon; snow albedo forcing; direct radiative forcing; Tibetan Plateau