skip to main content

SciTech ConnectSciTech Connect

Title: FHR Process Instruments

Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt is a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the mostmore » significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both electrochemical techniques and optical spectroscopy are candidate fluoride salt redox measurement methods. Coolant level measurement can be performed using radar-level gauges located in standpipes above the reactor vessel. While substantial technical development remains for most of the instruments, industrially compatible instruments based upon proven technology can be reasonably extrapolated from the current state of the art.« less
  1. ORNL
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: NPIC & HMIT 2015, Charlotte, NC, USA, 20150223, 20150226
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
Country of Publication:
United States
FHR; instrumentation; measurement