skip to main content

SciTech ConnectSciTech Connect

Title: Investigation of Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High Field Solid State NMR

Aluminum site changes for dehydrated H-Beta zeolite during rehydration process are systematically investigated by ²⁷Al MAS and MQ MAS NMR at high magnetic fields up to 19.9 T. Benefiting from the high magnetic field, more detailed information is obtained from the considerably broadened and overlapped spectra of dehydrated H-beta zeolite. Dynamic changes of aluminum sites are demonstrated during rehydration process. In completely dehydrated H-Beta, invisible aluminum can reach 29%. The strength of quadrupole interactions for framework aluminum sites decreases gradually during water adsorption processes. The number of extra-framework aluminum (EFAL) species, i.e., penta- (34 ppm) and octa- (4 ppm) coordinated aluminum atoms rises initially with increasing water adsorption, and finally change into either tetra-coordinated framework or extra-framework aluminum in saturated water adsorption samples, with the remaining octa-coordinated aluminum lying at 0 and -4 ppm, respectively. Quantitative ²⁷Al MAS NMR analysis combined with ¹H MAS NMR indicates that some active EFAL species formed during calcination can reinsert into the framework during this hydration process. The assignment of aluminum at 0 ppm to EFAL cation and -4 ppm to framework aluminum is clarified for H-Beta zeolite.
; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
47582; 47841; KC0302010
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physical Chemistry C, 119(3):1410−1417
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Environmental Molecular Sciences Laboratory