skip to main content

SciTech ConnectSciTech Connect

Title: North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, \"best\" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 basedmore » on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.« less
 [1] ;  [1] ;  [2] ;  [3] ;  [1] ;  [4] ;  [5] ;  [3] ;  [6] ;  [7] ;  [1] ;  [8] ;  [9]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Pennsylvania State Univ., State College, PA (United States)
  3. Natural Resources Canada, British Columbia (Canada)
  4. Northern Arizona Univ., Flagstaff, AZ (United States)
  5. Unidad Campeche (Mexico)
  6. Univ. of Alaska, Fairbanks, AL (United States)
  7. Univ. of Delaware, Newark, DE (United States)
  8. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  9. USDA Forest Service, Saint Paul, MN (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1726-4189; KP1703030
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Biogeosciences (Online)
Additional Journal Information:
Journal Name: Biogeosciences (Online); Journal Volume: 12; Journal Issue: 2; Journal ID: ISSN 1726-4189
European Geosciences Union
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
54 ENVIRONMENTAL SCIENCES regional carbon cycle; north american carbon budget