skip to main content

SciTech ConnectSciTech Connect

Title: Effect of Metal-Support Interactions in Ni/Al2O3 Catalysts with Low Metal Loading for Methane Dry Reforming

Types of nickel sites as a function of preparation method have received much attention in the literature. In this work, two preparation methods, controlled adsorption and dry impregnation, are implemented to explore the effect of preparation method on catalytic nickel centers. For controlled adsorption, optimal synthesis conditions are identified using point of zero charge measurements, pH-precipitation experiments, and adsorption isotherms to prepare a catalyst with a high dispersion and strong metal support interactions. Metal support interactions influence the types of nickel sites formed. Thus, comparison of catalysts that differ primarily in metal support interactions, strong metal support interaction (controlled adsorption) and weak metal support interactions (dry impregnation), is of great interest. It is confirmed through characterization techniques; N2 physisorption, H2 chemisorption, temperature programmed reduction (TPR), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS) that the types of nickel sites formed are indeed strongly dependent on preparation method. Methane dry reforming reactivity studies are used to demonstrate the successful application of these catalysts and further probe the types of active centers present. Combustion analysis and XPS of spent catalysts reveal different amounts and nature of carbonaceous deposits as a function of the synthesis method.
; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
48177; KP1704020
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Catalysis. A, General, 494:57-67
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Environmental Molecular Sciences Laboratory