skip to main content

SciTech ConnectSciTech Connect

Title: An analytical bond-order potential for carbon

Carbon is the most widely studied material today because it exhibits special properties not seen in any other materials when in nano dimensions such as nanotube and graphene. Reduction of material defects created during synthesis has become critical to realize the full potential of carbon structures. Molecular dynamics (MD) simulations, in principle, allow defect formation mechanisms to be studied with high fidelity, and can, therefore, help guide experiments for defect reduction. Such MD simulations must satisfy a set of stringent requirements. First, they must employ an interatomic potential formalism that is transferable to a variety of carbon structures. Second, the potential needs to be appropriately parameterized to capture the property trends of important carbon structures, in particular, diamond, graphite, graphene, and nanotubes. The potential must predict the crystalline growth of the correct phases during direct MD simulations of synthesis to achieve a predictive simulation of defect formation. An unlimited number of structures not included in the potential parameterization are encountered, thus the literature carbon potentials are often not sufficient for growth simulations. We have developed an analytical bond order potential for carbon, and have made it available through the public MD simulation package LAMMPS. We also demonstrate that our potentialmore » reasonably captures the property trends of important carbon phases. As a result, stringent MD simulations convincingly show that our potential accounts not only for the crystalline growth of graphene, graphite, and carbon nanotubes but also for the transformation of graphite to diamond at high pressure.« less
 [1] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0192-8651; 537899
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Computational Chemistry
Additional Journal Information:
Journal Volume: 36; Journal ID: ISSN 0192-8651
Research Org:
Sandia National Laboratories (SNL-CA), Livermore, CA (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
36 MATERIALS SCIENCE carbon; interatomic potential; molecular dynamics; growth simulation