skip to main content

SciTech ConnectSciTech Connect

Title: Mechanistic study of methanol synthesis from CO₂ and H₂ on a modified model Mo₆S₈ cluster

We report the methanol synthesis from CO₂ and H₂ on metal (M = K, Ti, Co, Rh, Ni, and Cu)-modified model Mo₆S₈ catalyst using density functional theory (DFT). The results show that the catalytic behavior of a Mo₆S₈ cluster is changed significantly due to the modifiers, via the electron transfer from M to Mo₆S₈ and therefore the reduction of the Mo cation (ligand effect) and the direct participation of M in the reaction (ensemble effect) to promote some elementary steps. With the most positively charged modifier, the ligand effect in the case of K-Mo₆S₈ is the most obvious among the systems studied; however it cannot compete with the ensemble effect, which plays a dominate role in determining activity via the electrostatic attraction in particular to stabilize the CHxOy species adsorbed at the Mo sites of Mo₆S₈. In comparison, the ligand effect is weaker and the ensemble effect is more important when the other modifiers are used. In addition, the modifiers also vary the optimal reaction pathway for methanol synthesis on Mo₆S₈, ranging from the reverse water-gas shift (RWGS) + CO hydrogenation as that of Mo₆S₈ to the formate pathway. Finally, K is able to accelerate the methanol synthesis on Mo₆S₈more » the most; while the promotion by Rh is relatively small. Using the modifiers like Ti, Co, Ni, and Cu, the activity of Mo₆S₈ is decreased instead. The relative stability between *HCOO and *HOCO is identified as a descriptor to capture the variation in mechanism and scales well with the estimated activity. Our study not only provides better understanding of the reaction mechanism and actives on the modified Mo₆S₈, but also predicts some possible candidates, which can be used a promoter to facilitate the CH₃OH synthesis on Mo sulfides.« less
 [1] ;  [2]
  1. Yangzhou Univ., Yangzhou, Jiangsu (China)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 2155-5435; R&D Project: CO027; KC0302010
Grant/Contract Number:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 5; Journal Issue: 2; Journal ID: ISSN 2155-5435
American Chemical Society
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY CO2 activation; methanol; modified molybdenum sulfide; alkali metal; DFT